Exploiting Statistical Dependencies in Sparse Representations for Signal Recovery
نویسندگان
چکیده
منابع مشابه
Sparse signal recovery exploiting spatiotemporal correlation
of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii Chapter
متن کاملOn sparse signal representations
An elementary proof of a basic uncertainty principle concerning pairs of representations of WN vectors in different orthonormal bases is provided. The result, slightly stronger than stated before, has a direct impact on the uniqueness property of the sparse representation of such vectors using pairs of orthonormal bases as overcomplete dictionaries. The main contribution in this paper is the im...
متن کاملSparse signal recovery using sparse random projections
Sparse signal recovery using sparse random projections
متن کاملTrainable ISTA for Sparse Signal Recovery
In this paper, we propose a novel sparse signal recovery algorithm called Trainable ISTA (TISTA). The proposed algorithm consists of two estimation units such as a linear estimation unit and a minimum mean squared error (MMSE) estimator-based shrinkage unit. The estimated error variance required in the MMSE shrinkage unit is precisely estimated from a tentative estimate of the original signal. ...
متن کاملSparse signal recovery with unknown signal sparsity
In this paper, we proposed a detection-based orthogonal match pursuit (DOMP) algorithm for compressive sensing. Unlike the conventional greedy algorithm, our proposed algorithm does not rely on the priori knowledge of the signal sparsity, which may not be known for some application, e.g., sparse multipath channel estimation. The DOMP runs binary hypothesis on the residual vector of OMP at each ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2012
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2012.2188520